Background correction method for DNA microarray image processing

Omar Salem Baans*, Asral Bahari Jambek

School of Microelectronic Engineering, Universiti Malaysia Perlis, Arau, 02600 Perlis, Malaysia

Received 25th December 2018 / Accepted 25th May 2019

Abstract. Most microarray image scanning approaches provide an estimation of the intensity of the foreground and background for each spot. Background intensity must be corrected in order to remove the effect of non-specific binding or spatial heterogeneity across the array, but when such corrections are applied many problems appear, such as negative intensity for the spot or high variability of low-intensity log ratios. In this paper, many alternative methods for calculating background intensity are discussed and many approaches for background correction are tested and compared. GenePix, ScanAlyze and QuantArry are the strategies that were reviewed for background locations to extract their intensity. Similarly, to GenePix, a new approach for background calculation was proposed and tested. It shows more accurate results and the occurrences of error become lesser.

Keywords: background, correction, DNA, foreground, image-processing, microarray

INTRODUCTION

Nucleic acid expression regulates the production of proteins which control all cellular processes in the human biological system. The understanding of gene expression and the mechanism of protein production has many applications in terms of diagnosis, staging and finding suitable treatments for diseases. Using the cDNA microarray, it is possible to diagnose rapidly and efficiently the level of gene expression in the sample (Kooperberg et al., 2002; Lee et al., 2000).

There are many commercial and freeware microarray analysis software packages available. Each software program can be separated into three main tasks. The first is gridding or addressing, which is the process of specifying coordinates for every spot on the slide. The second is segmentation, which classifies each pixel as either foreground, corresponding to a spot of interest, or as background, corresponding to error or noise. The third and final task is intensity extraction, which is the step which, for each spot on the array, calculates the green and red foreground fluorescence intensity (Yang et al., 2002; Mabrouk et al., 2013; Ahmad et al., 2014).

The estimation of the background intensity is a very important step to be performed as part of the background correction process. This is because each spot intensity measure includes a contribution to the fluorescence that is not due to hybridization of the mRNA sample to produce spotted DNA. Background intensity can be estimated by more than one method, for example, using the main concentration of pixels located outside the spot mask (Sifakis et al., 2012; Smyth & Speed, 2003).

The background correction for the spot intensity can usually be performed by subtracting the background intensity from the foreground intensity of the spot, but sometimes negative values appear where the background value is greater than the foreground value for a given spot, which seems illogical. Many studies have

*Author for correspondence: Omar Salem Nasser Baans, Division of School of Microelectronic Engineering, Universiti Malaysia Perlis, Arau 02600. Email – omersalim4901@gmail.com
discussed this issue and proposed various methods that can be applied to avoid the problem (Geeleher et al.; Argyropoulos et al., 2010).

The main aim of this paper is to propose and examine a new background correction alternative that can be used to calculate the background value pair (Rb, Gb). In this paper, several microarray background correction methods are discussed. Section A presents the existing algorithm systems for calculating background intensity values, while section B discusses and compares the different methods used for background correction. Section C proposes the new background correction in this paper.

A. Most Popular Background Intensity Extraction Methods
Most microarray analyses define foreground intensity values for red and green fluorescence (Rf, Gf) as the mean or median value of all the pixel values inside the segmented spot mask as shown by the red circle at the center. However, other variations are available for the calculation of the background intensity values for red and green fluorescence (Rb, Gb) especially with respect to selecting the background region. Among the most popular approaches that utilize the median for the specially-selected region around the spot mask are GenePix, ScanAlyze and QuantArry.

The GenePix package considers the median value of all the pixel values inside the valley region as the foreground intensity value of the spot. The valley region is represented in Figure 1 as four pink rectangular areas surrounding the spot. The background intensity estimation methods implemented in ScanAlyze consider all the pixels that are located outside the spot mask but within the square where the spot lies. This is represented in Figure 1 as the blue square surrounding the red circle. The median of all these pixels is used as the estimated value of the local background intensity of the spot. Finally, the QuantArry method uses the median of every pixel in the area between the two green concentric circles in Figure 1 as the background intensity value for that spot (Fielden et al., 2002; Eisen & Michael, 2013). While the QuantArry method uses the median of every pixel in the area between the two green concentric circles in Figure 1 as the background intensity value for that spot (Luminomics, 2009; Bengtsson & Bengtsson, 2006; Affymetrix, 2006).

Table 1. Comparison between different background estimation alternatives.

<table>
<thead>
<tr>
<th>Features</th>
<th>GenePix</th>
<th>ScanAlyze</th>
<th>QuantArry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>Four diamonds</td>
<td>Blue square and spot mask</td>
<td>Two concentric circles</td>
</tr>
<tr>
<td>Background calculation</td>
<td>Median</td>
<td>Median</td>
<td>Median</td>
</tr>
</tbody>
</table>

From the data collected in Table 1, it can be seen that using the median of the pixels’ values in the GenePix region decreases the possibility of calculating an erroneous value, because the region is very distant from the spot and will not include any pixel that belongs to the spot. Thus, miscalculation is avoided for the bright pixel. However, estimation inaccuracy may occur in the other approaches, e.g., in ScanAlyze where there is overlap between the foreground and background areas, and hence it is inevitable that the values of pixels belonging to the spot will be included in the calculation.

B. Background Correction Method
The usual calculation method for finding the corrected value for the intensity of the spot for a two-color microarray is that of subtracting the values of the background intensity of the two colors, red and green (Rb, Gb) from the values of the foreground intensity of the two colors (Rf, Gf). This allows the true spot intensity (R, G) to
be more accurately evaluated. This is because the observed foreground intensity value is the sum of the background value and the true intensity value of the spot (Ritchie et al., 2007; Yin et al., 2005).

A simpler method for avoiding negative intensity values was presented by Edwards using a local median of the background values. This method is similar to the standard method, but when the value after subtraction is less than a specific small threshold value, it undergoes a monotonic function. Whereas when it is larger than the threshold value, it can be considered to be the true intensity of the spot (Edwards, 2003; Yang et al., 2002).

C. Proposed Method
From the algorithms in section II, the criteria of DNA microarray image processing can be improved by proposing a new algorithm specially in calculating background correction. It was mentioned before that the best method for background location is GenePix. However, to get more accurate result, the number of background square locations should be more than four to take more locations especially on the four edges of each side as well the red rectangular in Figure 2.

MATERIALS AND METHOD

As it is mentioned before in this article, to extract the intensity form DNA microarray slide, the user must go through three main process: addressing, segmentation, and intensity extraction. Using Matlab R2016b, we developed a code that can extract the intensity for 100 spots automatically. As it can be seen in the flow chart in Figure 3, matlab code starts by importing the microarray image slide as the image in Figure 4. Then, it precedes gridding process by convert the image to grayscale image, estimate spot spacing by autocorrelation, locate the centers of spots, draw gridding lines to separate each spot. After that, it proceeds by segmentation using logically combine local and global thresholds.

![Figure 2. Background proposed locations.](image)

Background intensity is calculated by taking the median of the four squares in the corner of each spot. Similarly, we tested adding another four rectangular on the middle edge of each side of each spot. Background correction performed using Edward algorithm (Edwards, 2003). Finally, the intensity of each spot was extracted by taking the median of the spot mask.

The mathematical Equations of background corrections starts firstly by calculating the red and green foreground (Rf, Gf) by finding the median value of the pixels inside each spot mask and calculate red and green background intensities (Rb, Gb) by finding the median value of the pixels inside the local background areas of the spot. Then, the spot intensity was calculated by subtracting the background from the foreground as in Equation (1) and (2):

\[
R = Rf - Rb \\
G = Gf - Gb
\]
The results of GenePix and this new algorithm compared and discussed. Another 6 more images such as image in Figure 5 compiled using this code with different background values while the foreground is similar. Thus, the conclusion becomes easier to pick the most accurate method.

Figure 3. Methodology flow chart.

Figure 4. Microarray ideal background image slide.

Figure 5. Microarray image slide.
In order to validate the results, another three microarray images as in Figure 6, each image consists of one hundred spots. These images utilized in this work are real pictures obtained from a public database of the Princeton University microarray database. Princeton University microarray database provide the measured intensity information for each image (Ball et al., 2005). Thus, this information was used as a reference to compare and validate this research results according to four parameters, these parameters are PSNR (Peak Signal to Noise Ratio).

![Figure 6. Princeton DNA microarray images to validate the results.](image)

RESULTS AND DISCUSSION

First of all, almost all the methods share a similarity especially when we compare the difference between the green and the red intensity for the same spots. The different usually fluctuating between zeros to 6 pixels. Matrix 1 below shows the results for Ideal Microarray Image that has a similar background values by 3 pixels and that’s why once we tried to show 100% similarities between GenePix BG location and the proposed method.

Matrix 2 shows the intensity extraction for DNA microarray image in Figure 5. Therefore, from matrix 1 and 2 the reader can know the background intensity for each spot in Figure 5 because it is fix number equals to three for every spot in Figure 4. Thus, red background intensity in the first in Figure 5 is equal to 2. However, green background intensity for the same spot is equal to 18 and so on. From this we can see how important of performing background correction before proceeding to extract the intensity of the spot.

<table>
<thead>
<tr>
<th>Red_Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 243 251 88 242 25 37 92 51 234</td>
</tr>
<tr>
<td>58 100 208 68 202 241 149 228 246 0</td>
</tr>
<tr>
<td>185 251 0 150 0 173 247 239 65 211</td>
</tr>
<tr>
<td>11 156 235 96 14 74 204 240 154 158</td>
</tr>
<tr>
<td>215 171 192 37 37 239 201 29 198 75</td>
</tr>
<tr>
<td>35 193 156 234 186 54 169 219 219 72</td>
</tr>
<tr>
<td>220 0 229 33 40 96 47 0 222 44</td>
</tr>
<tr>
<td>237 229 122 203 64 213 0 244 156 16</td>
</tr>
<tr>
<td>191 124 231 230 42 118 202 15 121 151</td>
</tr>
<tr>
<td>215 221 181 86 250 51 47 61 5 29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Green_Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>248 3 242 66 33 41 66 133 231 97</td>
</tr>
<tr>
<td>171 70 77 200 62 130 227 226 193 238</td>
</tr>
<tr>
<td>37 0 252 27 252 93 152 167 249 4</td>
</tr>
<tr>
<td>173 15 95 6 67 158 78 213 225 151</td>
</tr>
<tr>
<td>32 112 13 38 246 97 43 216 34 129</td>
</tr>
<tr>
<td>190 127 145 152 189 43 28 119 236 28</td>
</tr>
<tr>
<td>221 191 41 231 37 233 33 79 86 225</td>
</tr>
<tr>
<td>228 71 231 134 214 158 69 107 0 194</td>
</tr>
<tr>
<td>69 211 116 75 41 231 111 69 115 0</td>
</tr>
<tr>
<td>32 122 244 94 5 98 131 51 36 25</td>
</tr>
</tbody>
</table>

Matrix 1. Results of background correction method for ideal image.

<table>
<thead>
<tr>
<th>Red_Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 214 239 50 218 22 33 84 50 217</td>
</tr>
<tr>
<td>55 89 186 67 184 222 144 216 230 3</td>
</tr>
<tr>
<td>167 224 0 134 0 158 225 222 66 189</td>
</tr>
<tr>
<td>10 138 214 82 12 70 186 225 150 147</td>
</tr>
<tr>
<td>192 156 169 30 36 219 183 24 173 70</td>
</tr>
<tr>
<td>36 177 112 217 149 45 151 197 209 61</td>
</tr>
<tr>
<td>208 141 212 37 34 95 37 0 201 45</td>
</tr>
<tr>
<td>225 203 118 188 60 201 0 228 139 15</td>
</tr>
<tr>
<td>173 121 209 264 33 113 181 12 110 133</td>
</tr>
<tr>
<td>194 203 177 78 222 49 47 52 5 21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Green_Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 7 234 61 36 38 61 126 215 96</td>
</tr>
<tr>
<td>163 68 77 189 62 129 216 218 188 221</td>
</tr>
<tr>
<td>38 2 236 27 235 92 149 163 234 8</td>
</tr>
<tr>
<td>161 19 96 7 61 151 78 207 213 148</td>
</tr>
<tr>
<td>34 110 15 34 230 97 45 194 33 122</td>
</tr>
<tr>
<td>180 122 109 148 181 41 29 116 228 27</td>
</tr>
<tr>
<td>214 181 42 214 33 220 31 72 87 212</td>
</tr>
<tr>
<td>219 72 220 131 203 153 62 106 3 181</td>
</tr>
<tr>
<td>69 201 113 75 38 220 110 63 110 1</td>
</tr>
<tr>
<td>36 121 235 89 11 91 123 47 31 22</td>
</tr>
</tbody>
</table>

Matrix 2. Results intensity extraction for DNA microarray image in Figure 5.

Matrix 3 shows the different between using eight rectangular instead of four to calculate background intensity. As it can be seen below, there is for most of the spots and these different is varies between 0 and 6. However, one of the green spots shows a different of 32 pixels. That because when the user increases the locations of
background the accuracy will be increased as well and the occurrences of the error will be decreased.

Table 2 compares background corrections method applied on three DNA microarray images in Figure 6. The results of GenePix and the proposed method were compared with the Princeton database as a reference. The comparison was done depending the Peak Signal to Nois Ration PSNR as parameters for the comparison.

Table 2. Background correction comparisons between the proposed method and GenePix method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Image (1)</th>
<th>Image (2)</th>
<th>Image (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenePix</td>
<td>40.22 dB</td>
<td>43.17 dB</td>
<td>41.39 dB</td>
</tr>
<tr>
<td>Proposed</td>
<td>40.35 dB</td>
<td>43.18 dB</td>
<td>41.47 dB</td>
</tr>
</tbody>
</table>

According to Table 2, the accuracy of the proposed method is much better than GenePix methods where PSNR for the proposed is greater than PSNR for GenePix method for all the tested three images.

CONCLUSION

In this paper, a number of background correction calculations and algorithms were reviewed. The differences and similarities of the existing systems were studied in order to identify criteria for selecting the best program, i.e., the program which gives results closest to the true intensity values. Three methods for allocating and calculating the background intensity values were discussed and compared. These methods were GenePix, ScanAlyze and QuantArray. To correct the background intensity, a new algorithm was applied on microarray slide image using MATLAB in order to find the most accurate intensity value of the two-color microarray for each spot; and the result for that method and other existing methods were calculated and compared. Based on the findings, it is sufficed to state that choosing more background locations in the corners and the sides is the best way to find the most accurate background intensity.

ACKNOWLEDGMENTS

This research was funded by ScienceFund, Ministry of Science, Technology and Innovation (MOSTI), Malaysia (2015).

REFERENCES

